Fatigue Behaviour Study of Laser Hybrid Welded Eccentric Fillet Joints – Part Ii: State-of-the-art of Fracture Mechanics and Fatigue Analysis of Welded Joints

نویسندگان

  • M. M. Alam
  • A. F. H. Kaplan
  • P. Jonsén
چکیده

Simplified fatigue and fracture mechanics based assessment methods are widely used by the industry to determine the structural integrity significance of postulated cracks, manufacturing flaws, service-induced cracking or suspected degradation of engineering components under normal and abnormal service loads. In many cases, welded joints are the regions most likely to contain original fabrication defects or cracks initiating and growing during service operation. The welded joints are a major component that is often blamed for causing a structure failure or for being the point at which fatigue or fracture problems initiate and propagate. Various mathematical models/techniques for various classes of welded joints are developed by analytically or by simulation software’s that can be used in fatigue and fracture assessments. This literature survey compiled useful information on fracture and fatigue analysis of various welded joints. The present review is divided into two major sectionsfracture mechanics and fatigue analysis with widely used models. A survey table is also introduced to get the outlook of research trend on fatigue and fracture over last 3 decades. Although tremendous research effort has been implemented on fatigue and fracture analysis of conventional welding, research on relatively new welding technology (laser welding, hybrid laser welding) is still limited and unsatisfactory. In order to give guarantee or make welding standard for new welding technology, further research is required in the field of fatigue and fracture mechanics including FEM and multi-scale modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fatigue Behaviour Study of Laser Hybrid Welded Eccentric Fillet Joints – Part I

Welded joints are a major component that is often responsible for causing a structure failure or for being the point at which fatigue cracking initiates and propagates. Despite tremendous research efforts, the understanding of fatigue behaviour is still limited, particularly for new techniques like laser hybrid welding. Beside a comprehensive state-of-the-art study, the paper presents a fatigue...

متن کامل

The Fatigue Strength of Fillet Welded Connections

This report describes a study of the fatigue behavior of fillet welded joints stressed perpendicular to the weld line. The study included an experimental phase in which the stiess-life and cracking behavior of load and nonload carrying fillet weld joints was determined. This experimental study concentrated on the fatigue behavior in the transition region between high and low cycle fatigue 3 5 (...

متن کامل

Fatigue Life of Repaired Welded Tubular Joints

In this study, the effect of repair on fatigue life of tubular joints is investigated. Six cracked specimens precedently subjected to fatigue loading undergone to weld repair. Two of those specimens were shot peened before primary fatigue loading.  It is shown that repair gives rise to about 150% increase in fatigue life for original specimens while the increase of fatigue life for shot-peened ...

متن کامل

Improved Formula for the Stress Intensity Factor of Semi-Elliptical Surface Cracks in Welded Joints under Bending Stress

Welded joints are prone to fatigue cracking with the existence of welding defects and bending stress. Fracture mechanics is a useful approach in which the fatigue life of the welded joint can be predicted. The key challenge of such predictions using fracture mechanics is how to accurately calculate the stress intensity factor (SIF). An empirical formula for calculating the SIF of welded joints ...

متن کامل

Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime

As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009